Tutorial on Kicad, Solidworks for Quick Prototyping

Editor: Son Pham
Date: 3/11/2025

Hello, fellow UWaterloo students, I'm Son, a beginner in Kicad and Solidworks. The below steps help me get use to with Kicad or Solidworks quick. So, I hope after these basic steps you can start building simple prototype.

Final Product

Kicad

Requirement

First and foremost, we need to know what are we designing. So our goal is to design a fuse box for voltage sense lines.

We have 11 sense lines in total. The requirement is that each sense line need to have a fuse to protect end device or downstream device. Our device can handle 300mA at peak. So, I think 500mA would be a good number.

Next we will use connector and select the size for fuse and holder for fuse. Now, let go shopping.

Shopping

Here are four websites that I often use:

1. Digikey: Electronic component, sometimes it is cheaper than Amazon

- 2. Octopart: to get 3D model and Kicad symbol, footprint
- 3. Amazon: get other part that cheaper than digikey
- 4. McMasterCarr: great website for mechanical parts. It also has good technical information

These are three components that I pick. Also, please check the pitch size to avoid ordering parts that are not compatible on our perfboard.

By standard the pitch size of perfboard is 0.1 in or 2.54mm.

Pitch - Mating 0.100" (2.54mm)

Get the CAD, Symbols and Footprint files

Next, I will go to octopart to download the necessary files

Electronic Components Search Engine | Find Parts Fast | Octopart

This is the files that I received

They also include 3D model file here

Importing Symbol and Footprint to Kicad

Let put everything in one folder so we can manage it easier Now open kicad and create new project

On **Preference** select Manage Symbol Libraries and add _____.kicad_sym

Now go back to **Preference** and select Manage Foot Print Library, add folder

Start Building

Select kicad sch file to start editing

Press A to add symbol

Then we go to Tool > Annotate Schematic

Next

Now you can arrange components on your board, make sure fuse will fit in between two holder (0.6 in)

We also need to create a main board. So click on Edge.Cuts use rectangular symbol to draw the shape of your pcb board

Now, we need to route copper trace. There are two layers, front and back.

I select front and start Wiring (or press X)

Now you can check your product by click on View > 3D Viewer

CONGRATULATION!!! you can design a PCB on your own

Notice that we don't see the 3D connector here, let add it

Export to Step file

SolidWorks

Navigate SolidWorks (5 mins)

Rotate: using middle button on the mouse

Pan: or moving the design by pressing control button and middle button of the mouse

Spacebar:

Unit in SolidWorks (1 min)

On your right-hand side, select mm as unit

MKS (meter, kilogram, second)

CGS (centimeter, gram, second)

MMGS (millimeter, gram, second)

IPS (inch, pound, second)

Edit Document Units...

Fully Defined Editing Assembly

Measuring

Using Smart Dimension to measure the size of an object

Let's Start

Import STEP file

This is the circuit we design earlier

Let build a box for it; I usually search online to get an idea.

The box above looks nice but let make something simple.

I want to create a box with 5mm thick and cover the pcb boad. The box should have 4 leg with the height of 5mm to raise the board up. The box will be 40mm height.

Create a box

Draw a sketch around the circuit board

File > New part > Paste that sketch to top plane

Extrude that box for 40mm

Select top surface of the box and create 5mm shell outward

Save this as box

Create a leg

File > New Part

Create 10x10x 5mm object

save as leg

Assembly

File > new Assembly

add the box

add the leg

Change transparency of the box

Using Mate function

